
Basic Spring wiring solves 90%. This is the other 10%

for the Spring Dallas User Group
by Jack Frosch

20 November 2013

 Jack Frosch
◦ Consultant, Trainer, Entrepreneur

 jackfrosch@gmail.com
 LinkedIn:

http://www.linkedin.com/in/jackfrosch/
 Twitter: @jackfrosch

Let’s collaborate on something great!

 Basic Spring Wiring Review
 Spring Profiles
 Spring Expression Language
 @Conditional (Spring 4)

 Review Spring basic wiring using annotations,
XML, and code-based configuration

 Understand how to declare and use Spring
Profiles

 Understand how to use SpEL to dynamically
specify properties

The IoC/DI Value Proposition
Spring Config - XML
Spring Config - Annotations
Spring Config - Code

 Core Spring is all about IoC/DI
◦ = Inversion of Control / Dependency Injection

 IoC/DI allows us to separate those things that

change from those that don’t and only
change those classes that change

public class Collaborator {
 …
}
…
public class UsefulService {
 private Collaborator helper;

 public UsefulService() {
 helper = new Collaborator();
 }
 ...
}

public class Collaborator { … }
public class BetterCollaborator extends Collaborator {
 @Override
 (some behavior)
}
…
// We have to crack open UsefulService to
// use BetterCollaborator … even though UsefulService
// hasn’t changed!
public class UsefulService {
 private BetterCollaborator helper;
 public UsefulService() {
 helper = new BetterCollaborator();
 }
 ...
}

// It’s better to use interfaces
public interface UserfulService { … }
public interface Collaborator { … }

public class CollaboratorImpl implements Collaborator {…}

public class BetterCollaboratorImpl extends CollaboratorImpl {
 @Override (some behavior)
}
…
// But we still have to crack open UsefulService
// even though UsefulService hasn’t changed!
public class UsefulServiceImpl implements UsefulService {
 private Collaborator helper;
 public UsefulServiceImpl() {
 helper = new BetterCollaborator();
 }
 ...
}

// This is best

public interface Collaborator { … }
public interface UsefulService { … }
public class CollaboratorImpl implements Collaborator {…}
public class BetterCollaboratorImpl extends CollaboratorImpl {
 @Override (some behavior)
}
…
public class UsefulServiceImpl implements UsefulService {
 private Collaborator helper;
 public UsefulServiceImpl(Collaborator helper) {
 this.helper = helper;
 }
 ...
}
// External process (i.e. Spring) determines which
// implementation is injected. Thus, we can change
// collaborator implementations without touching UsefulService

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns=“…”>
 <bean id=“usefulService“
 class=“com.acme.UsefulServiceImpl">
 <constructor-arg ref=”collaborator1” />
 </bean>

 <bean id=“collaborator1"
 class="com.acme.CollaboratorImpl" />

 <bean id=“collaborator2"
 class="com.acme.BetterCollaboratorImpl" />
</beans>

Live Code Demo

// More specifically: @Service, @Repository, @Controller
@Component
public class CollaboratorImpl implements Collaborator {
}

@Service
public class UsefulServiceImpl implements UsefulService {
 private Collaborator helper;

 @Autowired
 public UserServiceImpl(Collaborator helper) {
 this.helper = helper;
 }
}

Live Code Demo

public interface Collaborator { … }
public interface UsefulService { … }
public class CollaboratorImpl implements Collaborator {…}
public class BetterCollaboratorImpl extends CollaboratorImpl {…}
public class UsefulServiceImpl implements UsefulService {…}

@Configuration
public class AppConfiguration {
 @Bean
 public Collaborator helper() {
 return new BetterCollaboratorImpl();
 }

 @Bean(name=“myService”)
 public UsefulService usefulService() {
 return new UsefulServiceImpl(helper());
 }
}

Bean name is “helper”

Bean name is “myService”

Live Code Demo

The environment problem
Spring Profiles as a solution

 Spring’s basic wiring solves problems for
using alternate implementations
But this works only when we know in advance we
need to change Spring to use the alternate
implementation for all environments

 When the app is executed in different
environments, we usually need to change the
Spring wiring

 Suppose you create a web app
◦ On your development environment, you deploy it to

Tomcat. The app needs to
 Use ehCache
 Access your local MySQL database

◦ After local testing, you commit and a WAR file is built to
run on QA’s JBoss server. The app needs to
 Use the JBoss caching solution
 Access the QA PostgreSQL database

◦ After QA testing, a release WAR is built for deployment
to the production WebSphere servers. The app needs to
 Use the WQAS caching solution
 Access the production Oracle database

 What has changed in your code between
these environments?
◦ Nothing

 Yet, as we move between environments, we
have to crack open the Spring configuration
files (XML, annotations, code) and make
wiring changes to accommodate the target
environment

 Enter Spring Profiles

 Spring Profiles were introduced in Spring 3.1
 Using them is simple
◦ Associate beans with a profile (or no profile)
◦ Specify default profile(s) in effect when Spring

context loads
◦ Specify active profile(s) in effect to override the

default profiles specified
◦ The effective profiles are the default profiles if

active profiles not specified

 When the Spring context is loaded
◦ All beans not associated with a profile are

registered in the context
◦ All beans associated with the effective profiles are

registered
◦ If effective profiles are in effect, beans associated

with a profile, but not the effective profiles will not
be registered

Beans in “dev”

Beans in “qa”

Beans in “prod”

Beans in no
profile

spring.profiles.active=dev

Beans in “dev”

Beans in no
profile

Resulting Spring Context

 To support associating beans to profiles
◦ Spring XML schema was changed
◦ Annotations were changed for declaring the profile

 Spring XML schema was changed
◦ The <beans> element now supports a profiles

attribute
◦ <beans> elements can now be nested inside the

outer <beans> element
 But inner <beans> must be at the end of the outer

<beans> element declarations
◦ The XML unique id rule in page is relaxed
 Beans in different profiles can (and will) have the same

id

<beans xmlns=“…”> <!-- No profile specified -->
 <bean id=“myBean” … /> <!--belongs to no profile-->

 <beans profile=“dev”>
 <bean id=“cacheProvider” … />
 <bean id=“dataSource” … />
 </beans>

 <beans profile=“qa”>
 <bean id=“cacheProvider” … />
 <bean id=“dataSource” … />
 </beans>

 <beans profile=“prod”>
 <bean id=“cacheProvider” … />
 <bean id=“dataSource” … />
 </beans>
</beans>

 Spring added an @Profile annotation to allow
Components to be associated with a profile

@Service
@Profile(“prod”)
public class ServiceImpl implements Service {…}

// in a different package
@Service
@Profile(“dev”)
public class ServiceImpl implements Service {…}

@Component
public class Consumer {
 @Autowired
 public Consumer(Service service) {…}
}

 Ok, but how do we specify which profiles are
the effective profiles?

 We use key/value pair(s)
◦ Two keys are used:
 spring.profiles.default
 spring.profiles.active
◦ The values associated with these are the profile(s);

e.g.
 spring.profiles.default=prod,fullSecurity
 spring.profiles.active=dev,simpleSecurity

 Ok, but where do we specify these key value
pair(s)?

 There are multiple places possible
◦ Initialization parameters on DispatcherServlet
◦ Context parameters of a web application
◦ JNDI entries
◦ Environment variables
◦ JVM system properties
◦ Using the @ActiveProfiles annotation on an

integration test class

Live Code Demo
(xml, annotations and code config)

 Basic Spring config solves 90% of the problem
 Profiles solves 90% of the remaining 10%*
 The SpEL solves the rest
 Why so little?
◦ SpEL is more useful in XML than in Java code
◦ But if we’re in Java code, we can do everything SpEL

can do anyway
◦ So really, it’s a mostly solution for the remainder of

the Spring config remaining in XML
 For some organizations, this will be very little

*These numbers are for illustration purposes only. Your mileage may vary.

 The expression language supports the following functionality
◦ Literal expressions
◦ Boolean and relational operators
◦ Regular expressions
◦ Class expressions
◦ Accessing properties, arrays, lists, maps
◦ Method invocation
◦ Relational operators
◦ Assignment
◦ Calling constructors
◦ Bean references
◦ Array construction
◦ Inline lists
◦ Ternary operator
◦ Variables
◦ User defined functions
◦ Collection projection
◦ Collection selection
◦ Templated expressions

You will be tested on all of
these at the end of the

presentation…

Wow! That’s a lot!

Let’s see a live code
demo

(xml & annotations)

 Profiles solves a common runtime problem
◦ However, we still need to declare in advanced that a

bean should be loaded for a particular profile
◦ What if we want to load a bean only if
 Is a particular library is available on the class path?
 An environment variable is set?
 A particular annotation (with its specified data) is

specified for the bean

 To solve these edge cases, we could use
some complicated combination of basic bean
wiring, Profiles, and SpEL

 Spring 4 offers a simpler solution:

@Conditional

@Service
@Conditional(FooCondition.class)
public class ServiceImpl implements Service {…}

// in a different package
@Service
@Conditional(BarCondition.class)
public class ServiceImpl implements Service {…}

@Component
public class Consumer {
 @Autowired
 public Consumer(Service service) {…}
}

// Spring 4 defines this:

public interface AnnotatedTypeMetadata {
 boolean isAnnotated(String annotationType);

 Map<String, Object> getAnnotationAttributes(
 String annotationType);

 Map<String, Object> getAnnotationAttributes(
 String annotationType,
 boolean classValuesAsString);

 MultiValueMap<String, Object> getAllAnnotationAttributes(
 String annotationType);

 MultiValueMap<String, Object> getAllAnnotationAttributes(
 String annotationType,
 boolean classValuesAsString);
}

// Spring 4 defines these:

public interface ConditionContext {
 BeanDefinitionRegistry getRegistry();
 ConfigurableListableBeanFactory getBeanFactory();
 Environment getEnvironment();
 ResourceLoader getResourceLoader();
 ClassLoader getClassLoader();
}

public interface Condition {
 boolean matches(ConditionContext ctxt,
 AnnotatedTypeMetadata metadata);
}

public class FooCondition implements Condition {
 public boolean matches(ConditionContext ctxt,
 AnnotatedTypeMetadata metadata) {
 // implement the code that checks for the Foo condition
 // return true if the FooCondition is matched
 }
}

public class BarCondition implements Condition {
 public boolean matches(ConditionContext ctxt,
 AnnotatedTypeMetadata metadata) {
 // return true if the BarCondition is matched
 }
}

 As empirical proof that @Conditional will
solve a broad swath of configuration
problems
◦ Spring 4 re-implemented @Profile to add

@Conditional behavior using Spring 4’s
ProfileCondition class
◦ ProfileCondition checks if the bean’s declared

Profile(s) are in those defined by the runtime
environment
 If so, the bean is included
 If not, the bean is not included

 Basic Spring wiring solves 90%+ of the wiring
needs

 Sometimes, we need something extra
◦ Spring Profiles let us specify an umbrella of

common configurations that can be activated, or
ignored, with a single runtime active profile
indicator

 Sometimes Profiles are too coarse for the fine
tuning we need to do
◦ Spring Expression Language gives us fine grained,

dynamic control over configuration

 Checkout the docs
◦ 3.2.5 Reference:

http://bit.ly/17iZT7n
 Buy Manning’s Spring

in Action (4th Edition
coming soon)

 Corner Craig Walls
and pump him for
information

http://bit.ly/17iZT7n

Questions?

	Spring Advanced Wiring
	About Me
	Agenda
	Objectives
	Basic Spring Wiring
	The IoC / DI Value Proposition
	The IoC / DI Value Proposition
	The IoC / DI Value Proposition
	The IoC / DI Value Proposition
	The IoC / DI Value Proposition
	Spring Config - XML
	Spring Config - XML
	Spring Config - Annotations
	Spring Config - Annotations
	Spring Config - Code
	Spring Config - Code
	Spring Profiles
	The environment problem
	The environment problem
	The environment problem
	The Spring Profile solution
	The Spring Profile solution
	The Spring Profile solution
	The Spring Profile solution
	The Spring Profile solution�XML Configuration
	The Spring Profile solution
	The Spring Profile solution�Annotation Configuration
	The Spring Profile solution�Specifying Profiles
	The Spring Profile solution�Specifying Profiles
	Spring Config - Code
	Spring Expression Language (SpEL)
	Spring Expression Language (SpEL)
	Spring Expression Language (SpEL)
	@Conditional
	@Conditional
	@Conditional
	@Conditional
	@Conditional
	@Conditional
	@Conditional
	Summary
	Next Steps
	Slide Number 43

