
Introduction	to	Groovy
Part	III	– More	Groovy	Grooviness

GROOVY…	WHERE	LESS	REALLY	IS	MORE

Overview
Quick	Review	of	Part	II
More	on	Groovy	SDK
Traits
Look	ahead	to	Part	IV

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 2

Quick	Review	of	Part	II
Syntactical	Sugar
Groovy	truth
Groovy	operators
Closures,	A	First	Look
Intro	to	Collections	

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 3

More	on	Groovy	SDK
Groovy	Operator	Overloading
More	java.util Collections	JDK	enhancements
java.lang.String JDK	enhancements
java.lang.Integer JDK	enhancements

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 4

Groovy	Operator	Overloading
Groovy	provides	an	elegant	way	to	override	many	operators
Each	operator	that	can	be	overloaded	has	a	corresponding	method	named	like	
the	operator

◦ +	is	overloaded	with	plus()
◦ - is	overloaded	with	minus()
◦ ++	is	overloaded	with	next()
◦ -- is	overloaded	with	previous()
◦ <<	is	overloaded	with	leftShift()
◦ >>	is	overloaded	with	rightShift()
◦ []	is	overloaded	with	getAt and	putAt;	i.e.	a[b]	and	a[b]=c
◦ Many	more!

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 5

Groovy	Operator	Overloading
All	we	have	to	do	is	implement	the	operator	method	in	our	class	to	
give	meaning	to	the	operator
To	support	chaining,	the	return	from	the	method	is	the	reference	to	
the	object	with	the	operator	behavior

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 6

Groovy	Operator	Overloading
@groovy.transform.ToString

class Pizza {

String name

List<String> toppings = []

Pizza leftShift(String topping) {

toppings.add(topping)

this

}

}

Pizza p = new Pizza(name: "Simply Yummy")

p << 'Cheese' << 'Mushroom' << 'Pepperoni' << 'Sausage'

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 7

Groovy	Operator	Overloading
Some	examples	from	the	Groovy	SDK
◦ All	collections	have	+,	-,	and	<<
◦ Number	implements	+,	-,	*,	/	and	**	(power)	operators
◦ BigDecimals get	these	behaviors

◦ Dates
◦ Have	+	and	– support,	as	well	as	++	and	-- for	adding/subtracting	days	from	a	date
◦ Have	a	getAt and	putAt method	for	getting	/	setting	fields

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 8

More	on	collections	enhancements
Spread	operator	(*)	works	across	elements	of	a	collection

List list = [‘My’, ‘name’, ‘is’, ‘Jack’]
assert list.size() == 4
assert list*.size() == [2, 4, 2, 4]

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 9

More	on	collections	enhancements
Given	this	List:
List	list	=	[1,2,3,4,5]

We	can	reverse	the	list:
list.reverse()	==	[5,4,3,2,1]
We	can	join	the	list	elements
list.join(‘-’)	==	‘1-2-3-4-5’

We	can	find	the	first	and	last	elements
list.first()	==	1
list.last()	==	5

We	can	even	find	all	permutations	of	a	list
list.permutations ==	[[1,	2,	4,	5,	3],	[5,	3,	2,	4,	1],	[1,	3,	2,	5,	4],	[3,	1,	2,	4,	5],	[3,	4,	2,	5,	1],,…]

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 10

More	on	collections	enhancements
Given	this	collection:

List list = [‘My’, ‘name’, ‘is’, ‘Jack’]

Collect	method	takes	a	closure	and	applies	it	to	each	element	yielding	
a	transformed	element:

List newList = list.collect { it.toUpperCase() }

assert newList == [‘MY’, ‘NAME’, ‘IS’, ‘JACK’]

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 11

More	on	collections	enhancements
Given	this	collection:

List list = [‘My’, ‘name’, ‘is’, ‘Jack’]

We	can	slice	into	the	list	using	subscripts	and	ranges
assert list[3] == [‘Jack’]

assert list[1..3] == [‘name’, ‘is’, ‘Jack’]

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 12

More	on	collections	enhancements
Collections	also	have
◦ find(Closure)	– find	first	element	matching	condition	in	closure	
◦ findAll(Closure)	- find	all	elements	matching	condition	in	closure	
◦ inject	method	taking	a	closure	with	two	arguments,	the	initial	value	and	the	
element	value

Combining	these,	we	can	perform	a	Filter/Map/Reduce	operation	
with	findAll,	collect	and	inject	methods
First,	let’s	see	this	in	Java

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 13

More	on	collections	enhancements
// LineItem has boolean taxable, int qty and BigDecimal price

public BigDecimal calculateTaxableTotal(List<LineItem> items) {

BigDecimal sum = BigDecimal.ZERO;

for(LineItem item: items) {

if(item.isTaxable()) {

sum = sum.add(item.getPrice().multiply(item.getQty()));

}

}

return sum;

}

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 14

More	on	collections	enhancements
// LineItem has boolean taxable, int qty and BigDecimal price

BigDecimal calculateTaxableTotal(List<LineItem> items) {

items.findAll{ it.taxable }

.collect{ it.price * it.qty }

.inject { sum, cost -> sum += cost }

}

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 15

Some	String	enhancements
We’ve	seen	String	interpolation
“Hello $name”

And	Heredocs:
‘’’

<customer>

<name>Acme></name>

<id>1234></id>

</customer>

‘’’

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 16

Some	String	enhancements
There	are	more	…	a	lot	more!
◦ capitalize :		‘hello’.capitalize() == ‘Hello’
◦ reverse: ‘hello’.reverse() == ‘olleh’
◦ isXXX: ‘1.0’.isInteger() == false
◦ ‘1.0’.isDouble() == true
◦ execute: ‘cmd.exe /c dir’.execute() // lists dir
◦ center: ‘ banner ’.center(20, ‘*’)

== ‘****** banner ******’
◦ padLeft/Right: '123'.padLeft(6, '_') == ‘___123’

'1234'.padLeft(6, '_') == ‘__1234’

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 17

Some	Integer	Enhancements	
times:	10.times{	print	“$it	“	}	//	prints	0	1	2	3	4	5	6	7	8	9
power:	2**16	==	65536
upto:	1.upto(10)	{	print	"$it	"	}	//	prints	1	2	3	4	5	6	7	8	9	10

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 18

Traits
Traits	are	new	in	Groovy	2.3
Declared	like	an	interface	or	class,	except	with	the	trait keyword

They	kind	of	feel	like	classes
◦ TraitA can	extend	TraitB and	implement	interfaces	X,	Y,	Z
◦ They	can	have	state
◦ They	can	declare	abstract	methods

However,	they’re	used	by	classes	like	interfaces
◦ ClassA implements	TraitA,	TraitB

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 19

trait Sailing {
void sail() { println “I’m sailing!” }

}

Traits
Traits	are	new	in	Groovy	2.3

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 20

trait Flying {
String airplaneType
void fly() { println “I’m flying a $airplaneType!”

}

trait Sailing {
void sail() { println “I’m sailing!” }

}
class Person implements Flying, Sailing {}

Person p = new Person(airplaneType: ‘Boeing 737’)
p.fly() // prints I’m flying a Boeing 737
p.sail() // prints I’m sailing!

Traits
What	if	there’s	a	method	clash?		Last	declared	implements,	wins

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 21

trait SailingA {
void sail() { println “I’m sailing A!” }

}

class Person implements SailingA, SailingB {}

Person p = new Person()
p.sail() // prints I’m sailing B
// We can override this ordering by overriding method in Person
// and calling SailingA.super.sail()

trait SailingB {
void sail() { println “I’m sailing B!” }

}

Traits
Classes	can	override	trait	methods

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 22

trait Boating {
void sail() { println “I’m sailing!” }
void row() { println “I’m rowing!” }

}

class Person implements Boating {
void sail() { println “I’m sailboating!” }

}

Person p = new Person()
p.sail() // prints from class: I’m sailboating!
p.row() // prints from trait: I’m rowing!

Traits
In	Groovy	(not	Java),	we	can	implement	traits	at	runtime	rather	than	
compile	time

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 23

trait Named {
String name
void sayName() {

println “Hello $name”
}

}
trait Aged {

String age
void sayAge() {

println “Age: $age”
}

}

class Person {}

def p1 = new Person() as Named
p1.name = ‘Jack’
p1.sayName() // prints Hello Jack

def p2 = p1.withTraits Named, Aged
p2.name = ‘Jill’
p2.age = 29
p2.sayName() // prints Hello Jack
p2.sayAge() // prints Age: 54

Traits
A	few	other	points
◦ Traits	are	compiled	into	the	code
◦ Compatible	with	@CompileStatic
◦ Traits	can	be	chained	together	(think	Servlet	Filters)	to	pass	processing	through	to	
implemented	traits	earlier	in	the	chain

◦ A	method	on	TraitC can	call	super.x()	to	pass	control	to	prior	trait,	TraitB
◦ If	TraitB doesn’t	have	x(),	super	search	will	continue	to	TraitA,	then	the	Bar	class

class Foo extends Bar implements TraitA, TraitB, TraitC

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 24

What’s	Next
At	our	next	meeting	we	will	have	Part	III	of	this	Groovy	introduction.
We	will	continue	the	Groovy	Introduction	series	with	the	following:
◦ Some	useful	AST	transformations
◦ Understanding	the	Groovy	Meta-Object	Protocol	(MOP)
◦ Builders	and	Slurpers
◦ Adding	Groovy	to	your	Maven	Projects
◦ Using	Groovy	with	Your	Favorite	IDEs

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 25

Resources	&	Links
Groovy
◦ http://groovy.codehaus.org
◦ http://groovy.codehaus.org/Operator+Overloading
◦ http://beta.groovy-lang.org/docs/groovy-2.3.0/html/documentation/core-traits.html
◦ http://groovy.codehaus.org/Operators

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 26

