
Introduction	to	Groovy
Part	IV	– More	Groovy	Basics

GROOVY…	WHERE	LESS	REALLY	IS	MORE



Quick	Review	of	Part	III
Groovy	Operator	Overloading
More	java.util Collections	JDK	enhancements
java.lang.String JDK	enhancements
java.lang.Integer JDK	enhancements

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 2



Overview
Some	useful	AST	transformations
Understanding	the	Groovy	Meta-Object	Protocol	(MOP)
Builders	and	Slurpers
Adding	Groovy	to	your	Maven	Projects
Using	Groovy	with	Your	Favorite	IDEs

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 3



Some	useful	AST	transformations
First,	what	the	heck	is	a	Groovy	AST	Transformation?
◦ AST	==	Abstract	Syntax	Tree
◦ When	code	is	compiled,	it	is	broken	down	into	a	hierarchical	graph	of	syntax	elements
◦ AST	Transformations	participate	in	the	compiler’s	processing	to	alter	the	compiled	output
◦ This	means	,	unlike	dynamic	behaviors,	Java	can	see	the	ASTx code!

In	Groovy,	an	AST	Transformation	is	represented	by	an	annotation
Writing	AST	Transformations	is	a	complex	business	beyond	the	scope	of	this	talk

◦ There	are	online	and	book	resources	that	discuss	the	process
◦ The	process	will	soon	be	easier	thanks	to	some	tools	and	DSLs	in	early	stages	of	development

AST	Transformations	in	the	Groovy	SDK	are	in	groovy.transform

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 4



Some	useful	AST	transformations
@ToString
◦ Adds	a	toString method
◦ Takes	optional	arguments	to
◦ includeNames – include	field	names
◦ includeFields – include	private	attributes	in	addition	to	properties
◦ includePackage - include	package	names	of	properties/fields
◦ includes/excludes – include	or	exclude	specific	fields	and	properties	by	name.	Use	one	or	
the	other,	but	not	both

◦ includeSuper – whether	to	include	super	fields/properties
◦ ignoreNulls – don’t	display	fields	or	properties	with	null	values
◦ cache – whether	to	cache	toString results

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 5



Some	useful	AST	transformations
@TupleConstructor
◦ Adds	a	tuple-style	constructor	with	parameters	for	each	field	/	property
◦ Parms are	in	the	order	the	fields	are	declared
◦ If	includeSuperProperties is	set,	parms for	the	the super	fields	appear	first

◦ Default	values	(the	Java	defaults)	are	provided	for	each	argument	so	you	can	leave	off	any	
number	from	the	end
◦ This	provides	ability	for	c’tor to	be	used	as	a	default	no-arg c’tor
◦ Also,	Groovy’s map	c’tor is	usually	available.	See	GroovyDoc for	limitations

◦ Takes	optional	arguments	to
◦ callSuper passes	args in	super	call	rather	than	setting	properties
◦ includes/excludes - allows	specifying	fields	and/or	properties	by	name	to	include	or	exclude.	Use	one	or	the	
other,	but	not	both

◦ includeFields/includeProperties – include	fields	/	include	properties	in	c’tor
◦ includeSuperFields/includeSuperProperties – include	super	attributes	in	c’tor
◦ force overrides	suppression	of	generated	c’tor if	custom	c’tors present

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 6



Some	useful	AST	transformations
@EqualsAndHashCode
◦ Adds	an	equals	and	hashCode method
◦ Takes	optional	arguments	to
◦ callSuper – whether	to	include	super
◦ includes/excludes – allows	specifying	fields	and/or	properties	by	name	to	include	or	
exclude.	Use	one	or	the	other,	but	not	both

◦ includeFields/includeProperties – include	fields	/	include	properties	in	c’tor
◦ useCanEqual – Generates	a	canEqual method	to	be	used	by	equals.	Default	is	true.	See	
GroovyDocs for	details	on	this

◦ cache – whether	to	cache	hashCode calculations

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 7



Some	useful	AST	transformations
What	would	we	get	in	the	.class if	we	create	a	class	like	this?

@TupleConstructor
@EqualsAndHashCode
@ToString
class Person {
String firstName
String lastName
String email

}

That’s	nice,	but	do	I	really	have	to	repeat	those	three	ASTx?		Nope.

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 8



Some	useful	AST	transformations
@Canonical
◦ Equivalent	to	@TupleConstructor,	@EqualsAndHashCode,	@ToString
◦ However,	it’s	more	limited	in	options
◦ Adds	a	default	c’tor
◦ Adds	a	tuple-style	c’tor taking	fields	in	the	order	they	are	declared
◦ Map	c’tor may	not	be	available.	See	GroovyDocs

◦ Adds	default	equals,	hashCode,	and	toString methods
◦ Note:	C’tors added	only	if	you	don’t	write	one	of	your	own
◦ Other	more	specific	AST	Transformations	take	precedence;	i.e.	@ToString
◦ Takes	optional	arguments	to
◦ Include	/	Exclude	field	and/or	property	names	as	a	comma-separated	list	or	array

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 9



Some	useful	AST	transformations
@Immutable
◦ Class	is	made	final
◦ Creates	constructors	and	getters
◦ All	fields	are	private
◦ Dates,	Cloneables,	and	arrays	are	defensively	copied	on	the	way	in	and	out
◦ Immutable	types,	like	primitives	and	wrappers	are	allowed
◦ Fields	that	are	enums or	@Immutable	are	allowed
◦ Properties	must	themselves	be	immutable
◦ See	GroovyDocs for	details

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 10



Some	useful	AST	transformations
Quiz:
1.	What	is	the	visibility	of	a	class	with	no	visibility	modifier?
2.	What	is	the	visibility	of	attributes	with	no	visibility	modifier?
3.	What	is	the	visibility	of	methods	with	no	visibility	modifier?
4.	How	do	we	make	something	package	protected?

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 11



Some	useful	AST	transformations
@PackageScope
◦ On	a	class,	makes	class	package	protected
◦ On	a	field,	makes	field	package	protected
◦ On	a	method,	makes	field	package	protected
◦ See	GroovyDocs for	details

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 12



Some	useful	AST	transformations
@PackageScope
◦ On	a	class,	makes	class	package	protected
◦ On	a	field,	makes	field	package	protected
◦ On	a	method,	makes	field	package	protected
◦ See	GroovyDocs for	details

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 13



Some	useful	AST	transformations
@TypeChecked
◦ On	a	class	or	method,	causes	Groovy	compiler	to	use	compile	time	checks	in	the	style	of	Java

@CompileStatic
◦ Can	be	used	on	type,	c’tor,	method,	field,	local	variable	or	even	package	declaration
◦ Same	as	@TypeChecked,	except	also	does	static	compilation	bypassing	Groovy	Meta-Object	Protocol	
(MOP)

◦ You	lose	all	dynamic	behaviors	with	this,	but	get	performance	comparable	to	Java	since	dynamic	
method	dispatch	is	bypassed

◦ Especially	useful	in	upcoming	Groovy	2.4.0	support	of	Android	development

See	GroovyDocs for	details

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 14



Some	useful	AST	Transformations
There	are	several	more	AST	Transformations	in	the	Groovy	SDK
◦ See	http://groovy.codehaus.org/gapi/groovy/transform/package-summary.html

The	Groovy	community	also	produces	some	open	source	ones

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 15



Understanding	the	Groovy	Meta-Object	
Protocol	(MOP)
Groovy	is	a	dynamic	language
This	means:
◦ Methods	and	object	references	are	resolved	at	runtime
◦ The	compiler	gives	us	fewer	errors	since	“missing”	things	may	actually	be	valid	at	runtime
◦ Consider	this:

class Person {
String firstName
String lastName

}
// somewhere else in the code…
new Person(firstName: ‘Fred’, lastName: ‘Flintstone’).save()
// MethodMissingException thrown if save() isn’t available at runtime

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 16



How	does	Groovy	MOP	Work?

INTRO	TO	GROOVY	MOP 17

MetaClass
Registry Map MetaClass

POJO	Class POGO	Class

- To	access	the	MetaClass for	a	Java	object,	Groovy	queries	the	MetaClassRegistry
via	getMetaClass(Class)	method
- You	can,	too:
GroovySystem.metaClassRegistry.metaClass(java.lang.Integer)

- Groovy	objects	have	direct	access	to	their	MetaClass object

maps	java.lang.Class
to	a	MetaClass instance	



Java	method	call	under	Groovy	RT

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 18



Groovy	method	call	under	Groovy	RT

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 19



Responsive	Synthesis

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 20

With	the	MetaClass,	we	can	add	behavior	to	existing	classes	or	
instances	with	that	behavior	being	available	at	runtime
The	ultimate	meta-programming	is	creating	the	code	to	add	new	
behaviors	at	runtime
◦ Behaviors	we	don’t	even	know	about	at	compile	time
◦ Behaviors	that	come	into	being	based	on	runtime	stimulus

Grails	GORM	finders	is	a	first	rate	example
◦ Person.findAllByLastNameLike(‘Flint%’)



Builders	and	Slurpers
Because	of	Groovy’s dynamic	nature,	combined	with	its	special	
syntax	for	closures,	we	can	create	elegant	DSLs	using	(almost)	plain	
language	constructs	to	“Build”	markup
Let’s	take	a	look	at	two:
◦ XMLMarkupBuilder
◦ JsonBuilder

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 21



Builders	and	Slurpers
It	would	be	no	fun	if	we	could	easily	build	XML	or	Json using	a	
MarkupBuilder,	but	not	as	easily	read	it	in
For	that,	let’s	use	the	XMLSlurper and	JsonSlurper …

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 22



Adding	Groovy	to	Maven
Groovy	comes	with	a	groovy-all	JAR
Adding	the	dependency	to	Maven	POM	looks	like	this:
<dependency>

<groupId>org.codehaus.groovy</groupId>

<artifactId>groovy-all</artifactId> 

<version>${groovyVersion}</version>

<!-- Uncomment line below to use invokedynamic ver of Groovy 

(requires Java 7 or higher). -->

<!--<classifier>indy</classifier>-->

</dependency>

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 23



Adding	Groovy	to	Maven
Groovy	code	is	compiled	with	a	Groovy	aware	compiler
◦ groovyc is	the	native	joint compiler	shipped	with	Groovy
◦ There’s	also	a	Groovy-Eclipse	compiler	plugin	for	Maven
◦ IDEs	may	use	their	own	compiler	or	have	plugins	wrapping	one	of	the	standard	solutions
◦ This	page	has	a	nice	discussion	of	comparing	different	build	solutions:	
http://docs.codehaus.org/display/GMAVENPLUS/Choosing+Your+Build+Tool

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 24



Adding	Groovy	to	Maven
Using	Groovy-Eclipse	compiler	plugin:

http://groovy.codehaus.org/Compiling+With+Maven2

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 25



Adding	Groovy	to	Gradle
// build.gradle

apply plugin: 'eclipse‘ // here’s a better ‘idea’

apply plugin: 'groovy‘

repositories { mavenCentral() }

dependencies {

compile 'org.codehaus.groovy:groovy-all:2.3.6‘

testCompile 'junit:junit:4.11‘

} 

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 26



Using	Groovy	with	Your	Favorite	IDEs
Eclipse	supports	Groovy	with	Groovy	Plugin
◦ http://groovy.codehaus.org/Eclipse+Plugin

If	you’re	an	Eclipse	user,	I	highly	recommend	the	Groovy	Grails	Tool	
Suite	from	Spring
◦ http://spring.io/tools/ggts

IDEA	supports	Groovy	out	of	the	box
◦ http://www.jetbrains.com/idea/features/groovy.html

NetBeans supports	Groovy	with	a	plugin
◦ http://groovy.codehaus.org/NetBeans+Plugin

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 27



What’s	Next
At	our	next	meeting	October	18th,	we	will	have	a	talk	on	Grails
◦ I’ll	need	someone	to	set	up	WebEx	as	I’ll	be	dialing	in

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 28



Resources	&	Links
Groovy
◦ http://groovy.codehaus.org
◦ http://groovy.codehaus.org/Building+AST+Guide
◦ http://groovy.codehaus.org/gapi/groovy/transform/package-summary.html
◦ http://groovy.codehaus.org/Builders
◦ http://groovy.codehaus.org/gapi/groovy/json/JsonBuilder.html

INTRODUCTION	TO	GROOVY	...	WHERE	LESS	REALLY	IS	MORE 29


