
Introduction to Groovy
Part I – Compare & Contrast with Java

WHERE LESS REALLY IS MORE…

About the Labs
The labs are downloadable source code files packaged in a zip file. The download link will be
provided at the workshop.

Instructions for each lab are in comments in the source file. If you find a TODO, there’s work to
do!

The names of the labs are like LabX_NNN, where X corresponds to the part of this workbook and
NNN is in the range of 100-499
◦ The 100s labs are very simple “Uncomment / type this and run to see the results” kind of labs
◦ The 200s labs are more complex, but still on the easier level with many hints
◦ The 300s labs may introduce new concepts not in the materials and few hints on the basics
◦ The 400s labs are almost purely functional with little extra coding guidance available; i.e. “Given a list of

Orders (where the Order class is defined and some sample data provided), find all orders in USD with taxable
amounts more than $7250 and nontaxable amounts less than $1750.”

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 2

Overview
About Groovy
Getting Started
Groovy Scripts & Classes
POGO v POJO
Groovy Strings
Dynamic Typing
A Taste of Dynamic Behavior
Some Gotchas
What’s Next

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 3

About Groovy
A Brief History…
2003
◦ James Strachan announces the birth of Groovy as a project
◦ Java language look-and-feel
◦ Dynamic features modeled from Ruby, Python
◦ Guillame LaForge starts exploring Groovy

2004
◦ Groovy submitted to JCP (JSR 241)

2006
◦ James Strachan moves on from the Groovy project
◦ Guillame LaForge takes over

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 4

About Groovy
A Brief History…
2007
◦ Groovy 1.0 released after several betas
◦ G2One company is formed by Graeme Rocher (creator of Grails)
◦ LaForge is made Groovy Project Lead
◦ Groovy 1.0 and 1.1 released, then rebranded to 1.5 to reflect rapid changes

2008
◦ SpringSource acquires G2One

2009
◦ VMware acquires SpringSource

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 5

About Groovy
A Brief History…
2012
◦ Slow JCP process is abandoned and LaForge lists JSR 241 as dormant
◦ Groovy 2.0 released

2013
◦ VMware spins off SpringSource to Pivotal Software, Inc.

2014
◦ Groovy v2.3 released
◦ Current version is 2.3.6
◦ Includes traits, Java 8 support, and more

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 6

About Groovy
So what exactly is Groovy?

◦ Groovy is a dynamic language based on Java
◦ Groovy objects are java.lang.Objects
◦ Groovy objects implement groovy.lang.GroovyObject interface
◦ Groovy GDK defines Groovy-specific types
◦ Groovy also dynamically enhances artifacts in the JDK

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 7

Getting Started
For this talk, we’ll get Groovy manually. We’ll discuss including
Groovy as a build dependency in Part II

1. Download zip distribution from groovy.codehaus.org/Download
2. Unzip to install it
3. Set GROOVY_HOME
4. Set JAVA_HOME
5. Begin the Groovy love

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 8

Groovy Scripts and Classes

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 9

// file: SayHello.script
// Groovy code can be in a script
println “Hello World!”

// file: Hello.groovy
// Groovy code can be in a class like Java
class Hello {

static void main(args) {
println “Hello World!”

}
}

POGO v POJO
Let’s start with a Java POJO and make it into a Groovy POGO…

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 10

// a POJO

import java.util.Date;

public class Member {
private int memberId;
private String screenName;
private String firstName;
private String lastName;
private String email;
private Date joinDate;

public int getMemberId() { return memberId; }
public void setMemberId(int memberId){this.memberId = memberId;}

public String getScreenName() { return screenName; }
public void setScreenName(String screenName) {this.screenName =

screenName; }

public String getFirstName() { return firstName; }
public void setFirstName(String firstName) { this.firstName = firstName; }

public String getLastName() { return lastName; }
public void setLastName(String lastName) { this.lastName = lastName; }

public String getEmail() { return email; }
public void setEmail(String email) { this.email = email; }

public Date getJoinDate() { return joinDate; }
public void setJoinDate(Date joinDate) { this.joinDate = joinDate; }

@Override
public String toString() {

return String.format("Member(%d, %s, %s, %s, %s, %s)",
memberId, screenName, firstName, lastName, email,
joinDate.toString());

}
}

POGO v POJO
Let’s start with a Java POJO and make it into a Groovy POGO…

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 11

// POGO

@groovy.transform.ToString
class Member {

int memberId
String screenName
String firstName
String lastName
String email
Date joinDate

}

Groovy Strings
Let’s explore the four ways we can make String
literals…

◦ Single quote
‘Hello World!’

◦ Double Quote
“Hello World” – a java.lang.String
“Hello $name” – string interpolation token ($name) makes this
a groovy.lang.Gstring

◦ Triple Single Quote Heredoc
‘’’<airlines>

<airline>American</airline>
<airline>Southwest</airline>
<airline>Virgin America</airline>

</airlines>’’’

◦ Triple Double Quote Heredoc
“””<airlines>

<airline>${airlines[0]}</airline>
<airline>${airlines[1]}</airline>
<airline>${airlines[2]}</airline>

</airlines>”””

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 12

Dynamic Typing
Duck Typing…
If it walks like a duck and quacks like a duck, let’s treat it like a duck…

List list = [3, 2, 4, 1, 0, 5]
list.sort() // yields [0,1,2,3,4,5] … but where did sort() come from?

Groovy compiler didn’t complain…
It assumes sort() will be there are runtime

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 13

Dynamic Behaviors
With great power, comes great responsibility…

String.metaClass.asCanadian = { delegate + ‘, eh’ }

println ‘Nice weather’.asCanadian() // yields ‘Nice weather, eh’

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 14

Delegate means ‘the thing that should get this behavior’; i.e. the String

Some Gotchas
You can almost rename a .java source file to .groovy, but not quite…
In Groovy:

◦ a == b means a.equals(b)
◦ By default, no way to declare package-private visibility
◦ do/while not supported
◦ Floating point literals are BigDecimals, not doubles
◦ Array literal declaration won’t work: int[] x = {1,2,3}. Use int[] x = [1,2,3]
◦ Groovy compiler will not check throws clause on method as all exceptions

treated the same way by the compiler

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 15

Part I Self-Examination
1. In what year was Groovy announced?

2. What GA release of Groovy first introduced Traits?

3. Groovy is a strongly typed statically compiled language. (T/F)

4. Groovy objects are java.lang.Objects. (T/F)

5. All Groovy objects implement what interface?

6. All code you write in Groovy must be inside a class. (T/F)

7. The ‘A’ literal specified with single quotes is what type?

8. The “A-$code” literal is an instanceof groovy.lang.GString. (T/F)

9. A triple quoted literal is called a h_ _ _ d _ _

10. A method call to a non-existent method results in a compiler error. (T/F)

11. Given a1 == a2 compare whether a1 and a2 object references are the same. (T/F)

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 16

Part I Labs
Please complete the Lab1_1xx labs

Time permitting, you may go on to the Lab1_2xx, 3xx, and 4xx labs.

However, please complete the easier labs before turning to the more
challenging ones as the later labs build on concepts practiced in the
earlier labs.

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 17

Introduction to Groovy
Part II – Groovy Grooviness

GROOVY… WHERE LESS REALLY IS MORE

Overview
Syntactical Sugar

Groovy truth

Groovy operators
Closures, A First Look

Intro to Collections

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 19

First, A Tale of Two Types of Complexity…
Essential complexity
The problems we try to solve have essential complexity. By their nature,
they are complex

Accidental complexity
All the complexity we add in to implement a solution to the problem that
is not essential complexity is accidental complexity

Using Groovy’s syntactical sugars and idioms, we can drive out a lot of the
accidental complexity we added in because of Java

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 20

Syntactical Sugar
More default imported packages than Java

All classes assumed public

All fields assumed private; public getters / setters added automatically

Free map c’tor

Access / mutate properties like field level access (but it’s not)

Parentheses optional in method calls (unless no arg)

Semi-colons optional unless multiple statements on line (or classic for loop)

Return statement optional at end of methods. Last evaluated expression is returned. Don’t be obtuse!

Void methods return null

The Groovy compiler treats all exceptions as Runtime

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 21

Groovy Truth
Java is very rigid about truth
◦ if(someExpression) {…} // someExpression must be boolean result

This leads to a lot of noise in the code

if(arry != null && arry.length > 0) // arrays have length property
if(name != null && name.length() > 0) // Strings have length()
if(list != null && list.size() > 0) // collections have size()
if(map != null && map.size() > 0) // maps have size()
if(iter != null & iter.hasNext()) // iterators
if(value != 0) // number not zero is true
if(anyObject != null) // object not null is true

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 22

Groovy Truth
Groovy has a relaxed definition of truth
◦ It’s like JavaScript’s definition

This leads to a lot of noise in the code
if(anyObject) // true if not null
if(arry) // true if array is not null and size() > 0
if(name) // true if String is not null and size() > 0
if(list) // true if collection not null and size() > 0
if(map) // true if map is not null and size() > 0
if(iter) // true if iteration (or enumeration) not null & has more
if(value) // true if numeric not null and not zero

/* Groovy adds size() to arrays and Strings so we can finally have a
consistent syntax about a thing’s size */

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 23

Groovy Operators
Safe Navigation (?.)

Elvis (?:)

Spaceship (compareTo) (<=>)

Spread (*.)

Range operator (..)

getAt/putAt ([])

asType (as)

Regex find (=~) / Regex match (==~)

Method reference (.&)

Membership (in)

Identity (is)

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 24

Closures, A First Look
Groovy closures are first class functional citizens
Think of them as disembodied methods that can be passed around

Closure max = { a, b -> a > b ? a : b }

There’s an elegant syntax for declaring and passing them inline
◦ If a method takes a Closure as its last parameter, the closure can be declared inline
◦ For example, Groovy associates a collect method with java.util.Collection that takes a

transforming closure as the (last) argument allowing it to be called two ways:

Closure square = { it * it } // arg name defaults to ‘it’
[1,2,3].collect(square) // yields [1,4,9]
[4,5,6].collect{val -> val * val } // yields [16,25,36]

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 25

Intro to collections in Groovy
Groovy adds many enhancements to JDK collections
◦ collect, find, findAll, sort and many more

Groovy introduces a new type called a Range
Range r = 1..5
r.each{ print “$it ” } // yields: 1 2 3 4 5

Lists feel more like arrays
def vals = [1,2,3,4,5] // a java.util.ArrayList
println vals[2] // 3
println vals[-1] // 5

Maps feel more like beans. Simple string keys need not have quotes.
def vals = [a:1,b:2,c:3] // a java.util.LinkedHashMap
println vals[‘a’] // 1
println vals.c // 3

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 26

Part II Self-Examination
1. Java overrides the + operator for Strings, but not BigDecimals. Adding BigDecimals a and b requires us to use a.add(b)

instead of a+b. This is an example of _______ complexity imposed by the language.

2. The following are equivalent: println(‘Hello’) println ‘Hello’ (T/F)

3. If a method takes no arguments, parentheses are optional when calling the method (T/F)

4. When returning a value from a method the return statement is always required (T/F)

5. In Groovy truth, a non-null, but empty list is evaluated as true. (T/F)

6. In Groovy truth, a non-zero Integer is evaluated as true. (T/F)

7. Using the ___ Groovy operator we can shorten this common Java idiom: String x = name != null ? name :
“Anon”

8. Closures are behaviors that are first class types that can be passed around in the system. (T/F)

9. The following declares a _____: def x = [1,3,5,7]

10. The following declares a _____: def y = 1..99

11. The following declares a _____: def z = [a:2, b:4, c: 6]

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 27

Part II Labs
Please complete the Lab2_1xx labs

Time permitting, you may go on to the Lab2_2xx, 3xx, and 4xx labs.

However, please complete the easier labs before turning to the more
challenging ones as the later labs build on concepts practiced in the
earlier labs.

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 28

Introduction to Groovy
Part III – More Groovy Grooviness

GROOVY… WHERE LESS REALLY IS MORE

Overview
More on Groovy SDK

Traits

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 30

More on Groovy SDK
Groovy Operator Overloading

More java.util Collections JDK enhancements

java.lang.String JDK enhancements
java.lang.Integer JDK enhancements

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 31

Groovy Operator Overloading
Groovy provides an elegant way to override many operators
Each operator that can be overloaded has a corresponding method named like
the operator

◦ + is overloaded with plus()
◦ - is overloaded with minus()
◦ ++ is overloaded with next()
◦ -- is overloaded with previous()
◦ << is overloaded with leftShift()
◦ >> is overloaded with rightShift()
◦ [] is overloaded with getAt and putAt; i.e. a[b] and a[b]=c
◦ Many more!

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 32

Groovy Operator Overloading
All we have to do is implement the operator method in our class to
give meaning to the operator

To support chaining, the return from the method is the reference to
the object with the operator behavior

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 33

Groovy Operator Overloading
@groovy.transform.ToString

class Pizza {

String name

List<String> toppings = []

Pizza leftShift(String topping) {

toppings.add(topping)

this

}

}

Pizza p = new Pizza(name: "Simply Yummy")

p << 'Cheese' << 'Mushroom' << 'Pepperoni' << 'Sausage'

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 34

Groovy Operator Overloading
Some examples from the Groovy SDK
◦ All collections have +, -, and <<
◦ Number implements +, -, *, / and ** (power) operators
◦ BigDecimals get these behaviors

◦ Dates
◦ Have + and – support, as well as ++ and -- for adding/subtracting days from a date
◦ Have a getAt and putAt method for getting / setting fields

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 35

More on collections enhancements
Spread operator (*) works across elements of a collection

List list = [‘My’, ‘name’, ‘is’, ‘Jack’]
assert list.size() == 4
assert list*.size() == [2, 4, 2, 4]

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 36

More on collections enhancements
Given this List:

List list = [1,2,3,4,5]

We can reverse the list:

list.reverse() == [5,4,3,2,1]

We can join the list elements
list.join(‘-’) == ‘1-2-3-4-5’

We can find the first and last elements
list.first() == 1
list.last() == 5

We can even find all permutations of a list
list.permutations == [[1, 2, 4, 5, 3], [5, 3, 2, 4, 1], [1, 3, 2, 5, 4], [3, 1, 2, 4, 5], [3, 4, 2, 5, 1],,…]

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 37

More on collections enhancements
Given this collection:

List list = [‘My’, ‘name’, ‘is’, ‘Jack’]

Collect method takes a closure and applies it to each element yielding
a transformed element:

List newList = list.collect { it.toUpperCase() }

assert newList == [‘MY’, ‘NAME’, ‘IS’, ‘JACK’]

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 38

More on collections enhancements
Given this collection:

List list = [‘My’, ‘name’, ‘is’, ‘Jack’]

We can slice into the list using subscripts and ranges
assert list[3] == [‘Jack’]

assert list[1..3] == [‘name’, ‘is’, ‘Jack’]

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 39

More on collections enhancements
Collections also have
◦ find(Closure) – find first element matching condition in closure
◦ findAll(Closure) - find all elements matching condition in closure
◦ inject method taking a closure with two arguments, the initial value and the

element value

Combining these, we can perform a Filter/Map/Reduce operation
with findAll, collect and inject methods

First, let’s see this in Java

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 40

More on collections enhancements
// LineItem has boolean taxable, int qty and BigDecimal price

public BigDecimal calculateTaxableTotal(List<LineItem> items) {

BigDecimal sum = BigDecimal.ZERO;

for(LineItem item: items) {

if(item.isTaxable()) {

sum = sum.add(item.getPrice().multiply(item.getQty()));

}

}

return sum;

}

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 41

More on collections enhancements
// LineItem has boolean taxable, int qty and BigDecimal price

BigDecimal calculateTaxableTotal(List<LineItem> items) {

items.findAll{ it.taxable }

.collect{ it.price * it.qty }

.inject { sum, cost -> sum += cost }

}

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 42

Some String enhancements
We’ve seen String interpolation
“Hello $name”

And Heredocs:
‘’’

<customer>

<name>Acme></name>

<id>1234></id>

</customer>

‘’’

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 43

Some String enhancements
There are more … a lot more!
capitalize : ‘hello’.capitalize() == ‘Hello’
reverse: ‘hello’.reverse() == ‘olleh’
isXXX: ‘1.0’.isInteger() == false

‘1.0’.isDouble() == true
execute: ‘cmd.exe /c dir’.execute() // lists dir
center: ‘ banner ’.center(20, ‘*’)

== ‘****** banner ******’
padLeft/Right: '123'.padLeft(6, '_') == ‘___123’

'1234'.padLeft(6, '_') == ‘__1234’

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 44

Some Integer Enhancements
times: 10.times{ print “$it “ } // prints 0 1 2 3 4 5 6 7 8 9

power: 2**16 == 65536

upto: 1.upto(10) { print "$it " } // prints 1 2 3 4 5 6 7 8 9 10

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 45

Traits
Traits are new in Groovy 2.3
Declared like an interface or class, except with the trait keyword

They kind of feel like classes
◦ TraitA can extend one trait and implement zero or more interfaces
◦ TraitA can also implement multiple traits: trait TraitA implements TraitB, TraitC, TraitD
◦ They can have state
◦ They can declare abstract methods

However, they’re used by classes like interfaces
◦ ClassA implements TraitA, TraitB

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 46

trait Sailing {
void sail() { println “I’m sailing!” }

}

Traits
Traits are new in Groovy 2.3

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 47

trait Flying {
String airplaneType
void fly() { println “I’m flying a $airplaneType!”

}

trait Sailing {
void sail() { println “I’m sailing!” }

}
class Person implements Flying, Sailing {}

Person p = new Person(airplaneType: ‘Boeing 737’)
p.fly() // prints I’m flying a Boeing 737
p.sail() // prints I’m sailing!

Traits
What if there’s a method clash? Last declared implements, wins

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 48

trait SailingA {
void sail() { println “I’m sailing A!” }

}

class Person implements SailingA, SailingB {}

Person p = new Person()
p.sail() // prints I’m sailing B
// We can override this ordering by overriding method in Person
// and calling SailingA.super.sail()

trait SailingB {
void sail() { println “I’m sailing B!” }

}

Traits
Classes can override trait methods

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 49

trait Boating {
void sail() { println “I’m sailing!” }
void row() { println “I’m rowing!” }

}

class Person implements Boating {
void sail() { println “I’m sailboating!” }

}

Person p = new Person()
p.sail() // prints from class: I’m sailboating!
p.row() // prints from trait: I’m rowing!

Traits
In Groovy (not Java), we can implement traits at runtime rather than
compile time

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 50

trait Named {
String name
void sayName() {

println “Hello $name”
}

}
trait Aged {

String age
void sayAge() {

println “Age: $age”
}

}

class Person {}

def p1 = new Person() as Named
p1.name = ‘Jack’
p1.sayName() // prints Hello Jack

def p2 = p1.withTraits Named, Aged
p2.name = ‘Jill’
p2.age = 29
p2.sayName() // prints Hello Jack
p2.sayAge() // prints Age: 54

Traits
A few other points
◦ Traits are compiled into the code
◦ Compatible with @CompileStatic
◦ Traits can be chained together (think Servlet Filters) to pass processing through to

implemented traits earlier in the chain
◦ A method on TraitC can call super.x() to pass control to prior trait, TraitB
◦ If TraitB doesn’t have x(), super search will continue to TraitA, then the Bar class

class Foo extends Bar implements TraitA, TraitB, TraitC

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 51

Part III Self-Examination
1. To overload the + operator on a class, simply implement a method named ____
2. What is the result of this: [‘Santa’,‘Claus’,‘Knows’]*.size()
3. What is the result of this: [‘A’,‘B’,‘C’].join(‘,’)
4. What is the result of this: 2**3
5. What is the result of this:‘ banner ’.center(5, ‘*’)
6. As of Groovy v2.3, trait is a new keyword (T/F)
7. Do classes extend or implement a trait?
8. Like interfaces, traits can extend multiple traits. (T/F)
9. Like a class, traits can implement interfaces (T/F)
10. Traits can implement other traits (T/F)

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 52

Part III Labs
Please complete the Lab3_1xx labs

Time permitting, you may go on to the Lab3_2xx, 3xx, and 4xx labs.

However, please complete the easier labs before turning to the more
challenging ones as the later labs build on concepts practiced in the
earlier labs.

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 53

Introduction to Groovy
Part IV – More Groovy Basics

GROOVY… WHERE LESS REALLY IS MORE

Overview
Some useful AST transformations

Understanding the Groovy Meta-Object Protocol (MOP)

Builders and Slurpers
Adding Groovy to your Maven Projects

Using Groovy with Your Favorite IDEs

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 55

Some useful AST transformations
First, what the heck is a Groovy AST Transformation?
◦ AST == Abstract Syntax Tree
◦ When code is compiled, it is broken down into a hierarchical graph of syntax elements
◦ AST Transformations participate in the compiler’s processing to alter the compiled output
◦ This means , unlike dynamic behaviors, Java can see the ASTx code!

In Groovy, an AST Transformation is represented by an annotation
Writing AST Transformations is a complex business beyond the scope of this talk

◦ There are online and book resources that discuss the process
◦ The process will soon be easier thanks to some tools and DSLs in early stages of development

AST Transformations in the Groovy SDK are in groovy.transform

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 56

Some useful AST transformations
@ToString
◦ Adds a toString method
◦ Takes optional arguments to
◦ includeNames – include field names
◦ includeFields – include private attributes in addition to properties
◦ includePackage - include package names of properties/fields
◦ includes/excludes – include or exclude specific fields and properties by name. Use one or

the other, but not both
◦ includeSuper – whether to include super fields/properties
◦ ignoreNulls – don’t display fields or properties with null values
◦ cache – whether to cache toString results

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 57

Some useful AST transformations
@TupleConstructor
◦ Adds a tuple-style constructor with parameters for each field / property
◦ Parms are in the order the fields are declared
◦ If includeSuperProperties is set, parms for the the super fields appear first

◦ Default values (the Java defaults) are provided for each argument so you can leave off any
number from the end
◦ This provides ability for c’tor to be used as a default no-arg c’tor
◦ Also, Groovy’s map c’tor is usually available. See GroovyDoc for limitations

◦ Takes optional arguments to
◦ callSuper passes args in super call rather than setting properties
◦ includes/excludes - allows specifying fields and/or properties by name to include or exclude. Use one or the

other, but not both
◦ includeFields/includeProperties – include fields / include properties in c’tor
◦ includeSuperFields/includeSuperProperties – include super attributes in c’tor
◦ force overrides suppression of generated c’tor if custom c’tors present

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 58

Some useful AST transformations
@EqualsAndHashCode
◦ Adds an equals and hashCode method
◦ Takes optional arguments to
◦ callSuper – whether to include super
◦ includes/excludes – allows specifying fields and/or properties by name to include or

exclude. Use one or the other, but not both
◦ includeFields/includeProperties – include fields / include properties in c’tor
◦ useCanEqual – Generates a canEqual method to be used by equals. Default is true. See

GroovyDocs for details on this
◦ cache – whether to cache hashCode calculations

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 59

Some useful AST transformations
What would we get in the .class if we create a class like this?

@TupleConstructor
@EqualsAndHashCode
@ToString
class Person {

String firstName
String lastName
String email

}

That’s nice, but do I really have to repeat those three ASTx? Nope.

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 60

Some useful AST transformations
@Canonical
◦ Equivalent to @TupleConstructor, @EqualsAndHashCode, @ToString
◦ However, it’s more limited in options
◦ Adds a default c’tor
◦ Adds a tuple-style c’tor taking fields in the order they are declared
◦ Map c’tor may not be available. See GroovyDocs

◦ Adds default equals, hashCode, and toString methods
◦ Note: C’tors added only if you don’t write one of your own
◦ Other more specific AST Transformations take precedence; i.e.

@ToString
◦ Takes optional arguments to
◦ Include / Exclude field and/or property names as a comma-separated list or

array

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 61

@Canonical
class Person {

String firstName
String lastName
String email

}

Some useful AST transformations
@Immutable
◦ Class is made final
◦ Creates constructors and getters
◦ All fields are private
◦ Dates, Cloneables, and arrays are defensively copied on the way in and out
◦ Immutable types, like primitives and wrappers are allowed
◦ Fields that are enums or @Immutable are allowed
◦ Properties must themselves be immutable
◦ See GroovyDocs for details

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 62

Some useful AST transformations
Quiz:

1. What is the visibility of a class with no visibility modifier?

2. What is the visibility of attributes with no visibility modifier?
3. What is the visibility of methods with no visibility modifier?

4. How do we make something package protected?

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 63

Some useful AST transformations
@PackageScope
◦ On a class, makes class package protected
◦ On a field, makes field package protected
◦ On a method, makes field package protected
◦ See GroovyDocs for details

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 64

Some useful AST transformations
@TypeChecked
◦ On a class or method, causes Groovy compiler to use compile time checks in the style of Java

@CompileStatic
◦ Can be used on type, c’tor, method, field, local variable or even package declaration
◦ Same as @TypeChecked, except also does static compilation bypassing Groovy Meta-Object Protocol

(MOP)
◦ You lose all dynamic behaviors with this, but get performance comparable to Java since dynamic

method dispatch is bypassed
◦ Especially useful in upcoming Groovy 2.4.0 support of Android development

See GroovyDocs for details

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 65

Understanding the Groovy Meta-Object
Protocol (MOP)
Groovy is a dynamic language
This means:
◦ Methods and object references are resolved at runtime
◦ The compiler gives us fewer errors since “missing” things may actually be valid at runtime
◦ Consider this:

class Person {
String firstName
String lastName

}
// somewhere else in the code…
new Person(firstName: ‘Fred’, lastName: ‘Flintstone’).save()
// MethodMissingException thrown if save() isn’t available at runtime

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 66

How does Groovy MOP Work?

INTRO TO GROOVY MOP 67

MetaClass
Registry Map MetaClass

POJO Class POGO Class

- To access the MetaClass for a Java object, Groovy queries the MetaClassRegistry
via getMetaClass(Class) method

- You can, too:
GroovySystem.metaClassRegistry.metaClass(java.lang.Integer)

- Groovy objects have direct access to their MetaClass object

maps java.lang.Class
to a MetaClass instance

Java method call under Groovy RT

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 68

Groovy method call under Groovy RT

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 69

Responsive Synthesis

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 70

With the MetaClass, we can add behavior to existing classes or
instances with that behavior being available at runtime

The ultimate meta-programming is creating the code to add new
behaviors at runtime
◦ Behaviors we don’t even know about at compile time
◦ Behaviors that come into being based on runtime stimulus

Grails GORM finders is a first rate example
◦ Person.findAllByLastNameLike(‘Flint%’)

Builders and Slurpers
Because of Groovy’s dynamic nature, combined with its special
syntax for closures, we can create elegant DSLs using (almost) plain
language constructs to “Build” markup

Let’s take a look at two:
◦ XMLMarkupBuilder
◦ JsonBuilder

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 71

Builders and Slurpers
It would be no fun if we could easily build XML or Json using a
MarkupBuilder, but not as easily read it in

For that, let’s use the XMLSlurper and JsonSlurper …

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 72

Part IV Self-Examination
1. AST in “AST Transformation” stands for ___ ___ ___

2. AST Transformations (ASTx) happen at compile time. (T/F)

3. Describe what affect the @Canonical ASTx has on a class

4. Describe what affect the @Immutable ASTx has on a class

5. What’s the upside to using @CompileStatic on a class?

6. What’s the downside to using @CompileStatic on a class?

7. If we add a Closure named toString to the metaClass of the Integer class (i.e Integer.metaClass.toString = {…}), will the Integer
class’ toString or our closure be called when we execute 5.toString()?

8. If a Groovy class implements _______ then all method calls will be dispatched to the invokeMethod method

9. To easily create JSON from some data, use the _________

10. To easily create XML from some data, use the _________

11. To access elements of JSON in an object-like way, use the ______

12. To access elements of XML in an object-like way, use the ______

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 73

Part IV Labs
Please complete the Lab4_1xx labs

Time permitting, you may go on to the Lab4_2xx, 3xx, and 4xx labs.

However, please complete the easier labs before turning to the more
challenging ones as the later labs build on concepts practiced in the
earlier labs.

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 74

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 75

Fini
Let’s connect on LinkedIn:

http://www.linkedin.com/in/jackfrosch

http://www.linkedin.com/in/jackfrosch

Appendix A
Useful Links
◦ http://groovy.codehaus.org
◦ http://radio-weblogs.com/0112098/2003/08/29.html
◦ http://glaforge.appspot.com/article/groovy-s-birthday-and-news
◦ http://groovy.codehaus.org/Differences+from+Java
◦ http://groovy.codehaus.org/Groovy+Truth
◦ http://groovy.codehaus.org/Operators
◦ http://groovy.codehaus.org/Building+AST+Guide
◦ http://groovy.codehaus.org/gapi/groovy/transform/package-summary.html
◦ http://groovy.codehaus.org/Builders
◦ http://groovy.codehaus.org/gapi/groovy/json/JsonBuilder.html
◦ http://groovy.codehaus.org/Building+AST+Guide
◦ http://groovy.codehaus.org/gapi/groovy/transform/package-summary.html
◦ http://groovy.codehaus.org/Builders
◦ http://groovy.codehaus.org/gapi/groovy/json/JsonBuilder.html

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 76

http://groovy.codehaus.org/
http://radio-weblogs.com/0112098/2003/08/29.html
http://glaforge.appspot.com/article/groovy-s-birthday-and-news
http://groovy.codehaus.org/Differences+from+Java
http://groovy.codehaus.org/Groovy+Truth
http://groovy.codehaus.org/Operators
http://groovy.codehaus.org/Building+AST+Guide
http://groovy.codehaus.org/gapi/groovy/transform/package-summary.html
http://groovy.codehaus.org/Builders
http://groovy.codehaus.org/gapi/groovy/json/JsonBuilder.html
http://groovy.codehaus.org/Building+AST+Guide
http://groovy.codehaus.org/gapi/groovy/transform/package-summary.html
http://groovy.codehaus.org/Builders
http://groovy.codehaus.org/gapi/groovy/json/JsonBuilder.html

Appendix B
Self-Examination Answers

Part I
1. In what year was Groovy announced? ans. 2003

2. What GA release of Groovy first introduced Traits? ans. v2.3

3. Groovy is a strongly typed statically compiled language. ans. False!

4. Groovy objects are java.lang.Objects. ans. True

5. All Groovy objects implement what interface? ans. groovy.lang.GroovyObject

6. All code you write in Groovy must be inside a class. ans. False

7. The ‘A’ literal specified with single quotes is what type? ans. java.lang.String

8. The “A-$code” literal is an instanceof groovy.lang.GString. ans. True

9. A triple quoted literal is called a h _ _ _d _ _ ans. heredoc

10. A method call to a non-existent method results in a compiler error. ans. False!

11. Given a1 == a2 compare whether a1 and a2 object references are the same. ans. False - a.equals(b)

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 77

Appendix B
Self-Examination Answers

Part II
1. Java overrides the + operator for Strings, but not BigDecimals. Adding BigDecimals a and b requires us to use a.add(b) instead of a+b. This is

an example of _____ complexity imposed by the language. ans. accidental

2. The following are equivalent: println(‘Hello’) println ‘Hello’ ans. True

3. If a method takes no arguments, parentheses are optional when calling the method. ans. False

4. When returning a value from a method the return statement is always required ans. False – return is usually not required

5. In Groovy truth, a non-null, but empty list is evaluated as true. ans. False

6. In Groovy truth, a non-zero Integer is evaluated as true. ans. False

7. Using the ____ operator Groovy operator we can shorten this common Java idiom: String x = name != null ? name : “Anon”
ans. Elvis (String x = name ?: “Anon”)

8. Closures are behaviors that are first class types that can be passed around in the system. ans. True

9. The following declares a ___: def x = [1,3,5,7] ans. List

10. The following declares a _____ : def y = 1..99 ans. Range

11. The following declares a _____ : def z = [a:2, b:4, c: 6] ans. Map

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 78

Appendix B
Self-Examination Answers

Part III

1. To overload the + operator on a class, simply implement a method named ____ ans. plus

2. What is the result of this: [‘Santa’,‘Claus’,‘Knows’]*.size() ans. [5,5,5]

3. What is the result of this: [‘A’,‘B’,‘C’].join(‘,’) ans. “A,B,C”

4. What is the result of this: 2**3 ans. 8

5. What is the result of this:‘ banner ’.center(5, ‘*’) ans. “***** banner *****”

6. As of Groovy v2.3, trait is a new keyword ans. True

7. Do classes extend or implement a trait? ans. extend: class A extends TraitB

8. Like interfaces, traits can extend multiple traits. ans. False

9. Like a class, traits can implement interfaces ans. True

10. Traits can implement other traits ans. True

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 79

Appendix B
Self-Examination Answers

Part IV

1. AST in “AST Transformation” stands for ___ ___ ___ ans. Abstract Syntax Tree

2. AST Transformations (ASTx) happen at compile time. (T/F) ans. True

3. Describe what affect the @Canonical ASTx has on a class ans. Equivalent to @TupleConstructor,
@EqualsAndHashCode, @ToString

4. Describe what affect the @Immutable ASTx has on a class. ans. Class is made final; Creates
constructors and getters; All fields are private

5. What’s the upside to using @CompileStatic on a class? ans. Better performance

6. What’s the downside to using @CompileStatic on a class? ans. Unable to use dynamic behaviors

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 80

Appendix B
Self-Examination Answers

Part IV (cont’d)

7. If we add a Closure named toString to the metaClass of the Integer class (i.e
Integer.metaClass.toString = {…}), will the Integer class’ toString or our closure be called when we
execute 5.toString()? ans. The metaClass closure will be called

8. If a Groovy class implements _______ then all method calls will be dispatched to the invokeMethod
method. ans. GroovyInterceptable

9. To easily create JSON from some data, use the _________ ans. JsonBuilder

10. To easily create XML from some data, use the _________ ans. XMLMarkupBuilder

11. To access elements of JSON in an object-like way, use the ______ ans. JsonSlurper

12. To access elements of XML in an object-like way, use the ______ ans. XMLSlurper

INTRODUCTION TO GROOVY ... WHERE LESS REALLY IS MORE 81

	Introduction to Groovy�Part I – Compare & Contrast with Java
	About the Labs
	Overview
	About Groovy
	About Groovy
	About Groovy
	About Groovy
	Getting Started
	Groovy Scripts and Classes
	POGO v POJO
	POGO v POJO
	Groovy Strings
	Dynamic Typing
	Dynamic Behaviors
	Some Gotchas
	Part I Self-Examination
	Part I Labs
	Introduction to Groovy�Part II – Groovy Grooviness
	Overview
	First, A Tale of Two Types of Complexity…
	Syntactical Sugar
	Groovy Truth
	Groovy Truth
	Groovy Operators
	Closures, A First Look
	Intro to collections in Groovy
	Part II Self-Examination
	Part II Labs
	Introduction to Groovy�Part III – More Groovy Grooviness
	Overview
	More on Groovy SDK
	Groovy Operator Overloading
	Groovy Operator Overloading
	Groovy Operator Overloading
	Groovy Operator Overloading
	More on collections enhancements
	More on collections enhancements
	More on collections enhancements
	More on collections enhancements
	More on collections enhancements
	More on collections enhancements
	More on collections enhancements
	Some String enhancements
	Some String enhancements
	Some Integer Enhancements
	Traits
	Traits
	Traits
	Traits
	Traits
	Traits
	Part III Self-Examination
	Part III Labs
	Introduction to Groovy�Part IV – More Groovy Basics
	Overview
	Some useful AST transformations
	Some useful AST transformations
	Some useful AST transformations
	Some useful AST transformations
	Some useful AST transformations
	Some useful AST transformations
	Some useful AST transformations
	Some useful AST transformations
	Some useful AST transformations
	Some useful AST transformations
	Understanding the Groovy Meta-Object Protocol (MOP)
	How does Groovy MOP Work?
	Java method call under Groovy RT
	Groovy method call under Groovy RT
	Responsive Synthesis
	Builders and Slurpers
	Builders and Slurpers
	Part IV Self-Examination
	Part IV Labs
	Slide Number 75
	Appendix A�Useful Links
	Appendix B�Self-Examination Answers
	Appendix B�Self-Examination Answers
	Appendix B�Self-Examination Answers
	Appendix B�Self-Examination Answers
	Appendix B�Self-Examination Answers

